The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses

نویسندگان

  • Laura García-Gutiérrez
  • Houda Zeriouh
  • Diego Romero
  • Jaime Cubero
  • Antonio Vicente
  • Alejandro Pérez-García
چکیده

Biological control of plant diseases has gained acceptance in recent years. Bacillus subtilis UMAF6639 is an antagonistic strain specifically selected for the efficient control of the cucurbit powdery mildew fungus Podosphaera fusca, which is a major threat to cucurbits worldwide. The antagonistic activity relies on the production of the antifungal compounds iturin and fengycin. In a previous study, we found that UMAF6639 was able to induce systemic resistance (ISR) in melon and provide additional protection against powdery mildew. In the present work, we further investigated in detail this second mechanism of biocontrol by UMAF6639. First, we examined the signalling pathways elicited by UMAF6639 in melon plants, as well as the defence mechanisms activated in response to P. fusca. Second, we analysed the role of the lipopeptides produced by UMAF6639 as potential determinants for ISR activation. Our results demonstrated that UMAF6639 confers protection against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses, which include the production of reactive oxygen species and cell wall reinforcement. We also showed that surfactin lipopeptide is a major determinant for stimulation of the immune response. These results reinforce the biotechnological potential of UMAF6639 as a biological control agent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis.

Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mild...

متن کامل

The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.

Podosphaera fusca is the main causal agent of cucurbit powdery mildew in Spain. Four Bacillus subtilis strains, UMAF6614, UMAF6619, UMAF6639, and UMAF8561, with proven ability to suppress the disease on melon in detached leaf and seedling assays, were subjected to further analyses to elucidate the mode of action involved in their biocontrol performance. Cell-free supernatants showed antifungal ...

متن کامل

A brief global review on the species of cucurbit powdery mildew fungi and new records in Taiwan

In spite of the economic importance of powdery mildew on cucurbits, literature and databases about the fungal species reveal different species numbers and names, often indicating only two species, with inconsistent host specificities for different members of Cucurbitaceae. Revision of the available literature indicates the presence of at least six species of powdery mildews on Cucurbitaceae wit...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis

To better dissect non-host resistance against haustorium-forming powdery mildew pathogens, a sow thistle powdery mildew isolate designated Golovinomyces cichoracearum UMSG1 that has largely overcome penetration resistance but is invariably stopped by post-invasion non-host resistance of Arabidopsis thaliana was identified. The post-invasion non-host resistance is mainly manifested as the format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013